helena_cronin's picture
Co-director of LSE's Centre for Philosophy of Natural and Social Science; Author, The Ant and the Peacock: Altruism and Sexual Selection from Darwin to Today
Cronin's law of dual information storage

Adaptations stockpile information in environments as well as in genes.

The Hungarian mathematician Paul Erdos used to describe himself as a "machine for turning coffee into theorems". In much the same way, genes are machines for turning stars into a bird's compass; carotenoids into males of dazzling beauty; smells into love-potions; facial muscles into signals of friendship; a glance into uncertainty of paternity; and oxygen, water, light, zinc, calcium and iron into bears, beetles, bacteria or bluebells. More strictly, genes are machines for turning stars into birds and thereby into more genes.

This reminds us that adaptations weld together two information-storage systems. They build up a store of information in genes, meticulously accumulated, elaborated and honed down evolutionary time. And, to match that store, they also stockpile information in the environment. For genes need resources to build and run organisms; and adaptations furnish genes (or organisms) with the information to pluck those resources from the environment. So stars and carotenoids and glances need to be there generation after generation no less reliably than the information carried by genes.

Thus genes and environments are not in opposition; not zero-sum; not parallel but separate. Rather, they are designed to work in tandem. Their interconnection is highly intricate, minutely structured; and it becomes ever more so over evolutionary time. 

And thus, without environments to provide resources, genes would not be viable; and without genes to specify what constitutes an environment, environments would not exist. So how could biology not be an environmental issue? And, conversely, how could environments not be—necessarily—a biological issue?

Cronin's law of adaptations and environments

What constitutes an organism's environment depends on the species' adaptations.

What constitutes an organism's environment? The answer is that it is the organism's adaptations that stake out which are the relevant aspects of the world. An environment is not simply a given. It is the typical characteristics of a species, its adaptations, that specify what constitutes the environment for that species.

Think of it this way. Adaptations are keys to unlocking the world's resources. They are the means by which organisms harness features of the world for their own use, transforming them from part of the indifferent world-out-there into the organism's own tailor-made, species-specific environment, an environment brimming with materials and information for the organism's own distinctive adaptive needs. 

And so to understand how any species interacts with its environment, we need to start by exploring that species' adaptations. Only through adaptations was that environment constructed and only through understanding adaptations can we reconstruct it.

And, similarly, within a sexually reproducing species, differences between the sexes should be the default assumption. In particular, the female's adaptations should not be treated as mere adumbrations of the male's. On the contrary, if a rule-of-thumb default is needed, turn to the female. After all, the 'little brown bird' is what the entire species—males, females and juveniles—looks like before sexual selection distorts her mate into a showy explosion of colour and song. When it comes to environments, males perceive them as platforms for status games. Females most certainly do not.