Einstein Explains Why Gravity Is Universal
The ancient Greeks believed that heavier objects fall faster than lighter ones. They had good reason to do so; a heavy stone falls quickly, while a light piece of paper flutters gently to the ground. But a thought experiment by Galileo pointed out a flaw. Imagine taking the piece of paper and tying it to the stone. Together, the new system is heavier than either of its components, and should fall faster. But in reality, the piece of paper slows down the descent of the stone.
Galileo argued that the rate at which objects fall would actually be a universal quantity, independent of their mass or their composition, if it weren't for the interference of air resistance. Apollo 15 astronaut Dave Scott once illustrated this point by dropping a feather and a hammer while standing in vacuum on the surface of the Moon; as Galileo predicted, they fell at the same rate.
Subsequently, many scientists wondered why this should be the case. In contrast to gravity, particles in an electric field can respond very differently; positive charges are pushed one way, negative charges the other, and neutral particles not at all. But gravity is universal; everything responds to it in the same way.
Thinking about this problem led Albert Einstein to what he called "the happiest thought of my life." Imagine an astronaut in a spaceship with no windows, and no other way to peer at the outside world. If the ship were far away from any stars or planets, everything inside would be in free fall, there would be no gravitational field to push them around. But put the ship in orbit around a massive object, where gravity is considerable. Everything inside will still be in free fall: because all objects are affected by gravity in the same way, no one object is pushed toward or away from any other one. Sticking just to what is observed inside the spaceship, there's no way we could detect the existence of gravity.
Einstein, in his genius, realized the profound implication of this situation: if gravity affects everything equally, it's not right to think of gravity as a "force" at all. Rather, gravity is a feature of spacetime itself, through which all objects move. In particular, gravity is the curvature of spacetime. The space and time through which we move are not fixed and absolute, as Newton would have had it; they bend and stretch due to the influence of matter and energy. In response, objects are pushed in different directions by spacetime's curvature, a phenomenon we call "gravity." Using a combination of intimidating mathematics and unparalleled physical intuition, Einstein was able to explain a puzzle that had been unsolved since Galileo's time.