Kaleidoscopic Discovery Engine

The famous Canadian physician William Osler once wrote, "In science the credit goes to the man who convinced the world, not to the man to whom the idea first occurs." When we examine discoveries in science and mathematics, in hindsight we often find that if one scientist did not make a particular discovery, some other individual would have done so within a few months or years of the discovery. Most scientists, as Newton said, stood on the shoulders of giants to see the world just a bit further along the horizon. Often, more than one individual creates essentially the same device or discovers the same scientific law at about the same time, but for various reasons, including sheer luck, history sometimes remembers only the more famous discoverer.

In 1858 the German mathematician August Möbius simultaneously and independently discovered the Möbius strip along with a contemporary scholar, the German mathematician Johann Benedict Listing. Isaac Newton and Gottfried Wilhelm Leibniz independently developed calculus at roughly the same time. British naturalists Charles Darwin and Alfred Wallace both developed the theory of evolution independently and simultaneously. Similarly, Hungarian mathematician János Bolyai and Russian mathematician Nikolai Lobachevsky seemed to have developed hyperbolic geometry independently and at the same time.

The history of materials science is replete with simultaneous discoveries. For example, in 1886, the electrolytic process for refining aluminum, using the mineral cryolite, was discovered simultaneously and independently by American Charles Martin Hall and Frenchman Paul Héroult. Their inexpensive method for isolating pure aluminum from compounds had an enormous effect on industry. The time was "ripe" for such discoveries, given humanity's accumulated knowledge at the time the discoveries were made. On the other hand, mystics have suggested that a deeper meaning exists to such coincidences. Austrian biologist Paul Kammerer wrote, "We thus arrive at the image of a world-mosaic or cosmic kaleidoscope, which, in spite of constant shufflings and rearrangements, also takes care of bringing like and like together." He compared events in our world to the tops of ocean waves that seem isolated and unrelated. According to his controversial theory, we notice the tops of the waves, but beneath the surface there may be some kind of synchronistic mechanism that mysteriously connects events in our world and causes them to cluster.

We are reluctant to believe that great discoveries are part of a discovery kaleidoscope and mirrored in numerous individuals at once. However, as further examples, there were several independent discoveries of sunspots in 1611, even though Galileo gets most of the credit today. Halley's Comet, named after English astronomer Edmond Halley, was not first discovered by Halley because it had actually seen by countless observers even before the time of Jesus. However, Halley's useful calculations enabled earlier references to the comet's appearance to be found in the historical record. Alexander Graham Bell and Elisha Gray filed their own patents on telephone technologies on the same day. As sociologist of science Robert Merton remarked, "The genius is not a unique source of insight; he is merely an efficient source of insight."

Robert Merton suggested that "all scientific discoveries are in principle 'multiples'." In other words, when a scientific discovery is made, it is made by more than one person. Sometimes a discovery is named after the person who develops the discovery rather than the original discoverer.

The world is full of difficulties in assigning credit for discoveries. Some of us have personally seen this in the realm of patent law, in business ideas, and in our daily lives. Fully appreciating the concept of the kaleidoscope discovery engine adds to our cognitive toolkits because the kaleidoscope succinctly captures the nature of innovation and the future of ideas. If schools taught more about kaleidoscopic discovery, even in the context of everyday experience, then innovators might enjoy the fruits of their labor and still become "great" without a debilitating concern to be first or to crush rivals. The great anatomist William Hunter frequently quarreled with his brother about who was first in making a discovery. But even Hunter admitted, "If a man has not such a degree of enthusiasm and love of the art, as will make him impatient of unreasonable opposition, and of encroachment upon his discoveries and his reputation, he will hardly become considerable in anatomy, or in any other branch of natural knowledge."

When Mark Twain was asked to explain why so many inventions were invented independently, he said "When it's steamboat time, you steam."