bruce_parker's picture
Visiting Professor, Stevens Institute of Technology; Author, The Power of the Sea: Tsunamis, Storm Surges, and Our Quest to Predict Disasters

"It Just Is?"

The concept of an indivisible component of matter, something that cannot be divided further, has been around for at least two and half millennia, first proposed by early Greek and Indian philosophers. Democritus called the smallest indivisible particle of matter "átomos" meaning "uncuttable". Atoms were also simple, eternal, and unalterable. But in Greek thinking (and generally for about 2,000 years after) atoms lost out to the four basic elements of Empedocles—fire, air, water, earth—which were also simple, eternal, and unalterable, but not made up of little particles, Aristotle believing those four elements to be infinitely continuous.

Further progress in our understanding of the world based on the concept of atoms had to wait till the 18th century. By that time the four elements of Aristotle had been replaced by 33 elements of Lavoisier based on chemical analysis. Dalton then used the concept of atoms to explain why elements always react in ratios of whole numbers, proposing that each element is made up of atoms of a single type, and that these atoms can combine to form chemical compounds. Of course, by the early 20th century (through the work of Thompson, Rutherford, Bohr and many others) it was realized that atoms were not indivisible and they were thus not the basic units of matter. All atoms were made up of protons, neutrons, and electrons, which took over the title of being the indivisible components (basic building blocks) of matter.

Perhaps because the Rutherford-Bohr model of the atom is now considered transitional to more elaborate models based on quantum mechanics, or perhaps because it evolved over time from the work of many people (and wasn't a single beautiful proposed law), we have forgotten how much about the world can be explained by the concept of protons, neutrons, and electrons—probably more than any other theory ever proposed. With only three basic particles one could explain the properties of 118 atoms/elements and the properties of thousands upon thousands of compounds chemically combined from those elements. A rather amazing feat, and certainly making the Rutherford-Bohr model worthy of being considered a favorite deep, elegant, and beautiful explanation.

Since that great simplification, further developments in our understanding of the physical universe have gotten more complicated, not less. To explain the properties of our three basic particles of matter, we went looking for even-more-basic particles. We ended up needing 12 fermions (6 quarks, 6 leptons) to "explain" the properties of the 3 previously thought-to-be basic particles (as well as the properties of some other particles that were not known to us until we built high energy colliders). And we added 4 other particles, force-carrier particles, to "explain" the 4 basic force fields (electromagnetism, gravitation, strong interaction, and weak interaction) that affect those 3 previously thought-to-be basic particles. Of these 16 now thought-to-be basic particles most are not independently observable (at least at low energies).        

Even if the present Standard Model of particle physics turns out to be true, the question can be asked: "What next?" Every particle (whatever it's level in the hierarchy of particles) will have certain properties or characteristics. When asked "why" quarks have a particular electric charge, color charge, spin, or mass, do we simply say "they just do"? Or do we try to find even-more-basic particles which seem to explain the properties of quarks, and of leptons and bosons? And if so, does this continue on to still-even-more-basic particles? Could that go on forever? Or at some point, when asked the question "why does this particle have these properties", would we simply say "it just does"? At some point would we have to say that there is no "why" to the universe? "It just is."

At what level of our hierarchy of understanding would we resort to saying, "it just is"? The highest (and least understanding) level is religious—the gods of Mount Olympus each responsible for some worldly phenomenon, or the all-knowing monotheistic god creating the world and making everything work by means truly unknowable to humans. In their theories about how the world worked Aristotle and other Greek philosophers incorporated the gods of Mount Olympus (earth, water, fire, and air were all assigned to particular gods), but Democritus and other philosophers were deterministic and materialistic, and they looked for predictable patterns and simple building blocks that might create the complex world they saw around them. Throughout the growth and evolution of scientific thinking there have been various "it just is" moments, where an explanation/theory seems to hit a wall where one might say "it just is", only to have some one else come along and say "maybe not" and goes on to further advance our understanding. But as we get to the most basic questions about our universe (and our existence) the "it just is" answer becomes more likely. One very basic scientific question is whether there will ever be found truly indivisible particles of nature. The accompanying philosophical question is whether there can be truly indivisible particles of nature.

At some level the next group of mathematically derived "particles" may so obviously appear not to be observable/"real", that we will describe them instead as simply entities in a mathematical model that appears to accurately describe the properties of the observable particles in the level above. At which point the answer to the question of why these particles act as described by this mathematical model would be "they just do". How far down we go with such models will probably depend on how much a new level in the model allows us to explain previously unexplainable observed phenomena or to correctly predict new phenomena. (Or perhaps we might be stopped by the model becoming too complex.)

For determinists still unsettled by the probabilities inherent in quantum mechanics or the philosophical question about what would have come before a Big Bang, it is just one more step toward recognizing the true unsolvable mystery of our universe—recognizing it, but maybe still not accepting it; a new much better model could still come along.