athena_vouloumanos's picture
Associate Professor of Psychology, Director, NYU Infant Cognition and Communication Lab, New York University
Zone of Proximal Development

Clear instruction is essential for learning. But even the clearest instruction can be of limited use, if the learner is not at the right place to receive it. Psychologist Lev Vygotsky had a remarkable insight about how we learn. He coined the term zone of proximal development to describe a sweet spot for learning in the gap between what a learner could do alone, and what that learner could do with help from someone providing knowledge or training just beyond the learner’s current level. With such guidance, learners can succeed on tasks that were too difficult for them to master on their own. Crucially, guidance can then be taken away, like scaffolding, and learners can succeed at the task on their own.

The zone of proximal development introduces three interesting twists to cognitive scientists’ notions of learning. First, it might lead us to reconsider notions of what a person “knows” and “knows how to do.” Instead, conceptualizing peak knowledge or abilities as a learner’s current maximal accomplishments under guidance directs our attention to people’s potential for learning and growth, and helps us avoid reifying test scores and grades. Second, it introduces the idea of socially constructed knowledge, created in the interstitial space between the learner and the person providing guidance. Thinking about knowledge as an act of dynamic creation empowers teachers and learners alike. Third, it provides a nuanced caveat to findings showing that explicit instruction can actually make learning worse in some situations. Recent studies show that novices given instruction generated less creative solutions than novices engaged in unguided discovery-based exploration, but the zone of proximal development reminds us that the nature of the instruction relative to the learners’ state of readiness matters.

The zone of proximal development needs to be more widely known to parents, teachers, and anyone learning anything new (which hopefully includes all of us).

Teachers who understand students’ current knowledge state can present new information that takes students just beyond it, to a new level of understanding. Subtraction could then be introduced using simpler terms like “taking away” to some students, and in terms of a number line to students with a more developed number sense.

Parents who understand their children’s current abilities can give specific guidance by, say, verbally instructing a child to look at the straight edges of puzzle pieces to understand which pieces belong on the outside, or physically demonstrating how two puzzle pieces can interlock. Whereas encouraging children with generic praise can help them persevere, giving specific verbal or physical guidance in the child’s zone of proximal development can help children learn to solve puzzles on their own.